DESIGN OF Ku-BAND AXIAL MODE HELICAL ANTENNA

BY

ILIYA, SOLOMON ZAKWOI
(M.ENG./SEET/2007/1869)

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

DECEMBER, 2010
DESIGN OF Ku-BAND AXIAL MODE HELICAL ANTENNA

BY

ILIYA, SOLOMON ZAKWOI
(M.ENG./SEET/2007/1869)

A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL IN
PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
AWARD OF M.ENG. IN COMMUNICATION ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

DECEMBER, 2010
DECLARATION

I declare that this thesis "Design of Ku-band axial mode helical antenna" was done by me and has never been presented elsewhere for the award of a Master Degree. It is the result of my own research work except for works that have been cited in the References.

.. ..
Iliya Solomon Zakwoi Date
CERTIFICATION

This thesis titled "Design of Ku-band axial mode helical antenna" by Iliya Solomon Zakwoi (M.ENG/SEET/2007/1869) meets the regulation governing the award of the degree of Master of Engineering (M.Eng) of the Federal University of Technology, Minna and is approved for its contribution to scientific knowledge and literary presentation.

Engr. (Dr.) Y.A. Adediran
Supervisor

Engr. A.G. Raji
Head of Department

Engr. Prof. M.S. Abolarin
Dean, SEET

Prof. (Mrs) S. N. Zubairu
Dean, Postgraduate School
ACKNOWLEDGEMENTS

I would like to express my profound gratitude and appreciation to my supervisor, Engr. Dr. Y.A Adediran, for his guidance in the execution of this work, for keeping me on my toes and for his kind understanding. I am especially grateful for all the help and support he provided during the course of writing this thesis.

I would also like to thank the following people for their various contributions to the success of this work, the head of department of Electrical and Computer Engineering, Engr. A.G. Raji; the department’s team of internal examiners, Engr. E.N Onuoha; Engr. C. Alenoghena and Engr. Dr. M.N Nwoha; the team of project presentation assessors, for the advice and guidance given to me during the project presentation; and the entire staff of the Electrical and Computer Engineering department.

I would also like to acknowledge the Dean of School of Engineering, Prof. O. Usifo, for his support and the deputy Dean of School of Engineering, Dr. O. Chukwu, for patiently proof reading this thesis.

I wish to express my appreciation to the management and staff of the Federal University of Technology, Minna for the enabling environment given to me in the course of my study and to the management and staff of the National Space Research and Development Agency (NASRDA) for sponsoring and allowing me to engage on this research work.

Last, but not the least, I would like to thank my family for just being there, giving me the strength and the much needed moral support.
ABSTRACT

Helical antenna designs for much higher frequencies have been a very challenging task for most antenna designers. This, therefore, necessitated the need to develop a simplified approach for the design of helical antenna which has frequency range between 12 GHz and 14 GHz. The purpose of this thesis, Design of Ku-band axial mode helical antenna, is to design helical antennas that could be utilized for much higher frequencies than the available WLAN and C-band frequencies. Design curves drawn using MATLAB for the design of Ku-band helical antenna, enables the prediction of the gain and bandwidth in relation to the axial length and pitch angle. The pitch angle was increased between 8° and 20° to achieve the objective of this thesis. The increase in pitch angle led to a small increment in axial length, thus necessitating the need to keep the pitch angle within the radiation zone for the axial mode helical antenna. Calculated values of the normalized axial length (in free space) \(L_1 \) lie between 0.5\(\lambda \) and 14\(\lambda \), which gave the maximum gain of 21.0295 dB at an axial length of 14\(\lambda \). Saturation in bandwidth of about 13% was obtained as against the 30% that was achieved for the C-band which is not so critical because many techniques aimed at maximizing bandwidths in communication systems have been developed. An improvement in gain was achieved in this design when compared to the gain obtained for the existing C-band designs.