DESIGN AND CONSTRUCTION OF MICROCONTROLLER BASED ELECTRIC OVEN AND COOKER WITH TIME AND TEMPERATURE CONTROL

BY

JACOB JIYA GANA
2004/18815EE

A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRIC/COMPUTER ENGINEERING, IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF ENGINEERING (B.ENG) DEGREE IN ELECTRICAL AND COMPUTER ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY MINNA.

DECEMBER, 2009
DEDICATION

This project is dedicated to GOD Almighty, the great I AM, fountain and source of all wisdom, knowledge and understanding and my lovely mother.
DECLARATION

I, Mr. Jacob Jiya Gana, declare that this work was done by me and has never been presented anywhere else for the award of a degree. I also hereby relinquish the copyright to the Federal University of Technology Minna.

JACOB JIYA GANA
(Name of student)

ENGR J. A. ABOLARINWA
(Name of supervisor)

DR. Y. A. ADEDIRAN
(Name of Head of Department)

DR. (Mrs.) B. A. ADHIBENT
(Name of External Examiner)

05/02/2010
(Signature and Date)

09/02/2010
(Signature and Date)

09/03/10
(Signature and Date)
ACKNOWLEDGMENT

My profound gratitude and appreciation goes to the one and only wise GOD, the keeper and sustainer of life who has kept and preserved my life to this very moment. I say all glory, honor and adoration to his name for ever. (Amen).

I want to sincerely appreciate my parents, Mr. Joshua M. Gana (Late) and my mother Mrs. Hannah D. Gana for her prayers, care and motherly love, may the lord bless and keep you.

I also appreciate my supervisor Engr. J. A. Abolarinwa for your time and attention, for correction, advice and encouragement that fueled my zeal to work. Thank you Sir.

Also I acknowledged the entire members of my family, Mrs. Grace, Engr. John, Mr. Theophilus, Engr. Daniel, Mr. Titus and Master Elisha for all your encouragement and the brotherly care. God bless you.

My appreciation also goes to the Head of department and all lecturers and staffs of the department of electrical and computer engineering. I say I big thank you to all, this work will not have been a possible with your input. Thank you.

Lastly, I appreciate my friends and colleagues, Zacharias Gana, Lazarus Sala, Akaazua E.T, Job Yisa, Yakubu, Mesheack Baba and Victor L.Y. You have added value to it all. Meet you at the top.
ABSTRACT

The design and construction of microcontroller based electric oven and cooker with time and temperature control is presented in this project. The project is built around an Atmel 89C52 microcontroller which is programmed to carry out some user defined function. The project is design to meet the safety requirement that is lacking in many similar systems in the market and also make it operation as easy to operate as possible. The microcontroller unit was interfaced with some other components to achieve the set objectives. A temperature sensor LM35 senses the temperature of both the cooker and the oven units which is in analogue form and fed the output voltage to the input of the analogue to digital converter (ADC) which convert the analogue signal to a digital equivalent signal. The microcontroller performs the mathematics and display the result appropriately on the display unit.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of figure</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER ONE

1.1 Introduction 1
1.2 Motivation 2
1.3 Aim and Objectives 2
1.4 Thesis Layout 3

CHAPTER TWO

2.1 Literature Review 5
2.2 Microwave Oven 6
2.3 Electronic Oven 8
2.4 Brick Oven 8
2.5 Stove 9
2.6 Iron stove 11
CHAPTER THREE
Design and Construction

3.1 Power supply

3.2 LM35 precision centigrade temperature sensor

3.3 An 8-bit ADC0804 analogues to digital converter

3.4 Shift register (74HC156)

3.5 The microcontroller unit

3.6 CD4049 port expander

3.7 Four (4)-digit display

3.8 Relay and relay driver

3.10 User input keys

CHAPTER FOUR
Test, Result and Discussion

4.1 Testing

4.1.1 Power supply test

4.1.2 Sensor test
CHAPTER FIVE

Conclusion and Recommendation 32

5.1 Conclusion 32

5.2 Recommendations 32

References 34

Appendix
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1</td>
<td>Systems block diagram</td>
<td>16</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Power supply unit</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>LM35 Temperature Sensor</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Analog to Digital Converter (ADC)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Microcontroller Unit</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Serial in parallel Out Configuration</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>PNP Transistor Driver</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Relay and Relay Driver Connector</td>
<td>28</td>
</tr>
</tbody>
</table>