DESIGN AND CONSTRUCTION OF AUTOMATIC WATER LEVEL CONTROL SYSTEM

BY

AYOOLA SAHEED BISI

2004/18797EE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING FEDERAL UNIVERSITY OF TECHNOLOGY MINNA

DECEMBER, 2009.
DESIGN AND CONSTRUCTION OF AUTOMATIC WATER LEVEL CONTROL SYSTEM

BY

AYOOLA SAHEED BISI

2004/18797EE

A THESIS SUBMITTED TO DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY, FEDERAL UNIVERSITY OF TECHNOLOGY MINNA, NIGER STATE NIGERIA.

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF ENGINEERING (B.ENG) DEGREE IN ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER, 2009.
DEDICATION

My sincere gratitude to Almighty Allah who has been so mercyful and kind to me in all my ways and taking me far up to this stage of my life. I dedicate this project to my loving and caring parents, brothers, sisters and to all my loved ones.
DECLARATION

I AYOOLA SAHEED BISI declare that this work was done by me and has never been presented elsewhere for the award of a degree. I also hereby relinquish the copyright to the Federal University of Technology, Minna.

AYOOLA SAHEED BISI

Name of Student

[Signature and Date]

18/12/09

ENGR MRS C.O. ALENOGHENA

Name of Supervisor

[Signature and Date]

18/12/09

DR. Y. A. ADEDIRAN

Name of H.O.D

[Signature and Date]

Name of External Examiner

[Signature and Date]

May 6, 2010

10/3/10
ACKNOWLEDGEMENT

My appreciation goes to Almighty Allah for His protection, guidance, supernatural support and provision and seeing me through this programme in peace.

I am forever grateful to my lovely and caring parent Mr. and Mrs. Ayoola for their spiritual, reliable and financial support. Also, to my elder brothers and youngers ones , Mr. Ayoola Abiodun A., Mr. Ayoola Taoheed, Mr. Otun Akeem, Ganiyat, Kafilat, Labisi, Kafayat and Idris for their cares, love and support .

I acknowledge the support of my able Supervisor Engr. Mrs. C.O. Alenoghena for been so understanding and giving me time despite her tight schedule and for her encouragement all through the period of this work. Also for her great support which helped in actualization of this project.

My sincere gratitude also goes to the family of Adekunle Moses for their good guidance and support.

Finally, to my friends Shina, Maleek, Abdulganiy, Idris, Tajudeen, Timilehin, Abdulamihi (FUTA) and Ahmed and to all the graduating students of the department of electrical and computer engineering of the 2008/2009 Set.
ABSTRACT

This project work is on the design and construction of automatic water level control system, normally used in residential apartment and industries for control of water level in the reservoir so as to avoid water being overflowing and dry off from the reservoir.

The design of the highest and the lowest preset level in the reservoir was achieved by Quad -2-input NAND gate which serves as detector of the two predetermined level. The circuit operates with a 9V d.c (rectified voltage) supply.

The buzzer incorporated is to come on when the water level in the reservoir or tank gets a little bit below lowest preset (point e on the probe) level and goes off when water gets back to the point e while pumping of water still continue. But continuous alarming of the buzzer for a very long time than expected means that water has gone below the inlet pipe to the pumping machine from well or borehole, the system should be switch off to prevent the pumping machine from being damaged.
TABLE OF CONTENTS

PAGE

TITLE ... I
DEDICATION ... II
DECLARATION ... III
ACKNOWLEDGEMENT ... IV
ABSTRACT .. V
TABLE OF CONTENT ... VI
LIST OF FIGURES ... IX
LIST OF TABLES ... XI

CHAPTER ONE: INTRODUCTION

1.1 Aim Objectives of the Project ... 2
1.2 Application .. 3
1.3 Scope and Limitation .. 3
1.4 Motivation .. 3
1.5 Methodology .. 4

CHAPTER TWO: LITERATURE REVIEW

2.1 Historical Development of Automatic Control .. 6
2.2 What are the controls System? ... 7
 2.2.1 Open Loop Control System ... 7
 2.2.2 Closed Loop Control System ... 8
2.3 Control Water Control System ... 9
 2.3.1 Mechanical Method of Water Level Control .. 10
CHAPTER THREE: CIRCUIT DESIGN AND ANALYSIS

3.1 Circuit Design...14

3.2 Design of Power Supply Unit...15

3.2.1 Transformer Specification..16

3.2.2 Rectification...17

3.2.3 Filter Specification...20

3.2.4 IC Voltage Regulator..21

3.3 Design of the Detection Unit..22

3.3.1 The Sensor...23

3.3.2 Switching Circuit...24

3.3.3 Switching Action of a Transistor....................................25

3.4 Design of the Output Unit..27

3.4.1 The Alarm Circuit..27

3.4.2 Water Level Indicator..31

3.4.3 Pump Controller..32

3.4.4 Arrangement of Sensor in the Reservoir............................34

CHAPTER FOUR: CONSTRUCTION, TESTING AND DISCUSSION OF RESULTS

4.1 Construction Tools and Materials.....................................36

4.2 Precautions...38
4.3 Testing and Results..38
4.4 Problem Encounter and Troubleshooting...39

CHAPTER FIVE: Conclusion and Recommendation

5.1 Conclusion...40
5.2 Recommendations ...40

Appendix 1: Bill of Engineering Measures and Evaluation.................................41
Appendix 2: The Complete Circuit Diagram of Automatic Water Level Control System...42

References..43
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Tank level control system</td>
</tr>
<tr>
<td>2.1</td>
<td>Tank level control system block diagram</td>
</tr>
<tr>
<td>2.2</td>
<td>Generalized block diagram of an automatic control system</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanical method of water level control</td>
</tr>
<tr>
<td>2.4</td>
<td>Block circuit diagram of automatic water level control system</td>
</tr>
<tr>
<td>3.0</td>
<td>Block diagram of a power supply unit</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram showing 12V centre tapped transformer</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of a gang diode</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram showing full wave rectifier</td>
</tr>
<tr>
<td>3.4</td>
<td>Unrectified a.c waveform graph</td>
</tr>
<tr>
<td>3.5</td>
<td>The graph of output waveform after rectification</td>
</tr>
<tr>
<td>3.6</td>
<td>Diagram of d.c graph</td>
</tr>
<tr>
<td>3.7</td>
<td>Diagram of voltage regulator</td>
</tr>
<tr>
<td>3.8</td>
<td>Diagram of a sensor immersed in a water tank</td>
</tr>
<tr>
<td>3.9</td>
<td>Diagram showing operation of a transistor as a switch</td>
</tr>
<tr>
<td>3.10</td>
<td>Output characteristic of a typical transistor for a CE configuration</td>
</tr>
<tr>
<td>3.11</td>
<td>Shows transistor switching circuit and its load line</td>
</tr>
<tr>
<td>3.12</td>
<td>Diagram of non-inverting comparator</td>
</tr>
<tr>
<td>3.13</td>
<td>Diagram of 555 timer pin layout</td>
</tr>
<tr>
<td>3.14</td>
<td>Diagram of a typical astable configuration of 555 timer</td>
</tr>
<tr>
<td>3.15</td>
<td>Diagram showing a buzzer connected to the output of 555 timer via transistor</td>
</tr>
<tr>
<td>3.16</td>
<td>Single circuit diagram of LED level indicator</td>
</tr>
<tr>
<td>3.17</td>
<td>Pin configuration of CD4011BC</td>
</tr>
<tr>
<td>3.18</td>
<td>Control unit of highest water level</td>
</tr>
<tr>
<td>3.19</td>
<td>Control unit of lowest water level</td>
</tr>
</tbody>
</table>