DESIGN AND CONSTRUCTION OF AN AUTOMATIC FLUSH SYSTEM

BY

ONUEGBU CHUKWUMA DENNIS
2006/24422EE

Department of Electrical Electronics Engineering

Federal University of Technology Minna, Niger State.

November 2011.
DESIGN AND CONSTRUCTION OF AN AUTOMATIC FLUSH SYSTEM

BY

ONUEGBU CHUKWUMA DENNIS
2006/24422EE

Department of Electrical Electronics Engineering
Federal University of Technology Minna, Niger State.
A Project Submitted to the Department of Electrical Electronics Engineering for the Award of Bachelor of Engineering (B.Eng.) Degree

November 2011
Dedication

This project is dedicated to the Almighty God, the one in whom all things belong, and in whom I put all my trust, and to my parents Mr. Edwin Onuegbu and Mrs. Winifred Onuegbu.
Declaration

I Onuegbu Chukwuma Dennis declare that this work was done by me and has never been presented elsewhere for the award of a degree. I also hereby relinquish the copyright to the Federal University of Technology, Minna.

Onuegbu Chukwuma D.
(Student)

Engr. A.G Raji
(H.O.D Elect. Electronics Dept.)

Engr. Dr. Jacob Tsado
(Supervisor)

External Examiner

March 15, 2012

Engr. Dr. E. I. Dalal
Acknowledgement

I express my sincere appreciation to the Most High God who is ever present, to help in times of need; it is He who has favoured me and has also caused me to be favoured by everyone who has significantly contributed to the success of this work.

I wish to express my gratitude and appreciation to my parents Mr. Edwin Onuegbu and Mrs. Winifred Onuegbu for their financial and moral support to the realization of this work.

I also extend my appreciation to my supervisor Dr. Jacob Tsado who doubled as teacher and a counselor. I thank you Sir for your patience and unflinching support, this has kept me going.

I want to also say thank you to my friends and colleagues; Olayemi Sheriff, James O.Sylvester, Yusuf Olaitan, Mr. Nurudeen, Yahaya Abubakar, Jeremiah Kaduma and the Staff of Microscale Embedded Kaduna. You all will never lack help when you need it most.
Abstract

This Project presents the Design and Construction of an Automatic Flush System for a urinal. It contains a timing circuit which comprises of the transmitter, the receiver and control unit. These help to reduce the duty cycles of the DC Motor which actuates the flush system, thereby bringing the motor into action only when a flushing process is to take place and putting it OFF on standby mode.
Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of content</td>
<td>vi,vii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.0 Introduction... 1

1.1 Aims/Objectives.. 3

1.3 Scope of Work.. 4

1.4 Project Outline.. 4

CHAPTER TWO: LITERATURE REVIEW

2.0 Historical Background................................. 5

2.1 Type of Flushing Systems............................... 5

2.1.1 Manual handle flush system.......................... 6
2.1.2 Timed flush system ... 6
2.1.3 Door-regulated flush system .. 7
2.1.4 Automatic flush system .. 7

2.2 Types of Automatic Flush System

2.2.1 Water-closet Bowl Automatic Flushing system 9
2.2.2 Auto Flush For Tank Toilet .. 10

CHAPTER THREE: DESIGN AND IMPLEMENTATION

3.0 Design Modules .. 11

3.1 Power Supply Unit .. 12

3.1.1 The Transformer Circuit ... 12
3.1.2 Rectifier and Filter Circuit ... 12

3.2 Infrared Sensor Calculation ... 16

3.3 Amplification Circuit .. 18

3.3.1 First Stage Amplification ... 18
3.3.2 Second Stage Amplification ... 19

3.4 Comparator ... 20

3.5 First Phase (Instant Flushing) ... 21
3.6 Second Phase (Delayed Flushing) .. 25
3.7 Transmitter .. 31
3.8 Construction .. 32

CHAPTER FOUR: TESTING AND RESULTS

4.0 Tests and Results ... 34
4.1 Tests .. 34
4.2 Results .. 34
4.3 Problem Encountered .. 36

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.0 Conclusion .. 37
5.1 Recommendations ... 34

Reference .. 38