INVESTIGATION OF CARBONIZED PALM KERNEL SHELL AS A REINFORCING FIBRE MATERIAL IN BRAKE LINING FORMULATION.

BY

ADESINA ABDULJELIL ‘DEBISI
2006/24475EM

DEPARTMENT OF MECHANICAL ENGINEERING,
SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY
FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

NOVEMBER 2010
INVESTIGATION OF CARBONIZED PALM KERNEL SHELL AS A REINFORCING FIBRE MATERIAL IN BRAKE LINING FORMULATION.

BY

ADESINA ABDULJELIL 'DEBISI
2006/ 24475EM

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF BACHELOR OF ENGINEERING (B.Eng) DEGREE IN MECHANICAL ENGINEERING, FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA.

NOVEMBER, 2010
DECLARATION

Hereby declare that this research work titled “Investigation of carbonized palm kernel shell as a reinforcing material in brake lining formulation” has not been presented wholly or in part for the award of any degree elsewhere. Information derived from personal communication, published or published works of other persons have been duly acknowledged in this thesis.

Adesina Abduljelil ‘Debisi

2006/24475EM

Date

03-12-10
CERTIFICATION

This research project titled “Investigation Of Carbonised Palm Kernel Shell As Reinforcing Material In Brake Lining Formulation” carried out by Adesina, Abduljelil ‘Debisi, as read and approved having met the requirement for the award of Bachelor of Engineering (B.ENG) Degree in Mechanical Engineering, of Federal University Of Technology, Minna.

ENGR. S.A. LAWAL
Project Supervisor

PROF. R.H KHAN
Head of Department

External Examiner

Date and Signature

1/11/2010
DEDICATION

This project work is dedicated to the Almighty Allah who has been my strength all through my life and also to my parents Alhaji and Hajia A.R Adesina for their moral and financial support. I pray Allah grant you your heart desires (Amin).
ACKNOWLEDGEMENT

I give praise to Almighty Allah, Subhanallahu Wata Allah for His bountiful blessings upon me. He has been my source of strength, wisdom and success in this project and always, I raise your name Jalla Jallallahu.

My profound gratitude goes to my parents, Alhaji and Hajia A.R Adesina, what else can I say? But to say thank you, thank you, thank you so much and I pray Allah also thank you for me.

My sincere appreciation goes to my project supervisor Engr S.A Lawal for his relentless support all through this project. I acknowledge his constructive criticisms, correction of errors and obscurities in the progress of this work in making it a success.

Also to my siblings, Oyinloye Muritala, Adesina Abdulazeez (azzy pumping), Hamdalat, Lubaraq, and Raheemat, who have been supporting me in their prayers, thank you.

My acknowledgement will be incomplete if I did not commend the effort of my friends, Yinde Oluwatosin, Mustapha AbdulFattah, Ibrahim Luqman and Adebayo Abdulwahab. Thanks and God bless you all (Amen).

And to everyone who has contributed in one way or the other to the success of this work, can’t thank you enough but the almighty will reward you all, Thanks.
ABSTRACT

This study investigated the use of new materials to replace asbestos in brake linings. The automotive industry currently uses over 2000 different materials and their variants. In this study, the use of carbonized palm kernel shells was investigated for its suitability as a reinforcing fibre in brake linings. Palm shells contain fibres which give the fibrous property required for asbestos. The palm fruits were fresh and the oil depulped. The palm shells were then left to dry before carbonization. Carbonization was done in a muffle furnace at three varying temperatures of 150, 250, and 300 degrees Celsius. Particle sizes were obtained and the samples thus obtained were tested for various properties: water absorption, moisture content, apparent porosity, surface area and volume.
TABLE OF CONTENT

Title Page i
Declaration ii
Certification iii
Dedication iv
Acknowledgement v
Abstract vi
Table of Content vii
List of Figures lx
List of Tables x

CHAPTER ONE

1.0 INTRODUCTION 1
1.1 BACKGROUND OF THE STUDY 1
1.2 JUSTIFICATION OF THE STUDY 2
1.3 OBJECTIVE OF THE STUDY 3
1.4 SCOPE AND LIMITATION OF STUDY 3

CHAPTER TWO

2.0 LITERATURE REVIEW 4
2.1 DEFINITION AND STRUCTURE 4
2.2 BRAKE FRICTION MATERIALS 5
 2.2.1 Friction Additives 6
 2.2.2 Fillers 7
 2.2.3 Binders 8
 2.2.4 Reinforcing Fibres 8
2.3 BRAKE FRICTION DESIGNATIONS AND TYPICAL COMPOSITION 9
2.4 BRAKE LINING FORMULATION 9
2.5 CLASSIFICATION OF BRAKE LINING 10
2.6 NON ASBESTOS BRAKE LINING MATERIAL 11
 2.6.1 The Origin of Palm Kernel Fruit 12
 2.6.2 Carbonization of Palm Kernel Shell (CPKS) 13
CHAPTER THREE
3.0 RESEARCH METHODOLOGY 15
3.1 MATERIALS 15
3.2 EQUIPMENTS 16
3.3 EXPERIMENTAL PROCEDURE 16
3.3.1 Sieve Analysis 17
3.4 PHYSICAL AND CHEMICAL PROPERTIES 17
3.4.1 Moisture Content Determination 17
3.4.2 Bulk Density Determination 18
3.4.3 Pore Volume Determination 18
3.4.4 Apparent Porosity Determination 18
3.4.5 Water Absorption Determination 19

CHAPTER FOUR
4.0 RESULTS AND DISCUSSION 20
4.1 RESULTS 20
4.1.1 Moisture Content 20
4.1.2 Bulk Density 21
4.1.3 Pore Volume 22
4.1.4 Apparent Porosity 23
4.1.5 Water Absorption 24

CHAPTER FIVE
5.1 CONCLUSIONS 26
5.2 RECOMMENDATIONS 27
LIST OF FIGURES

Figure 1 Graph of bulk density as a function of particle size distribution 21
Figure 2 Graph of Apparent porosity as a function of particle size distribution 23
LIST OF TABLES

Table 2.1 Friction Additives 6
Table 2.2 Fillers 7
Table 2.3 Asbestos Free Materials 10
Table 2.4 Classification of Brake Linings 11
Table 4.1 Moisture Content Values 20
Table 4.2 Bulk Density 21
Table 4.3 Pore Volume 22
Table 4.4 Apparent Porosity 23
Table 4.5 Water Absorption Values 24