DESIGN AND FABRICATION OF KEY DUPLICATION MACHINE

BY

OYIBOCHA .C. EMUOBO

2004/18743EM

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF BACHELOR OF ENGINEERING (B.Eng) DEGREE IN MECHANICAL ENGINEERING, SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA NIGERIA

NOVEMBER, 2010
DECLARATION

I hereby declare that this project work titled, **DESIGN AND FABRICATION OF A KEY DUPLICATING MACHINE**, has not been presented wholly or in part for the award of any degree anywhere. Information derived from personal communication, published and unpublished works of other persons have been duly acknowledge in this thesis.

OYIBOCHA CYRIL EMUOBO

2004/18743EM

SIGNATURE

DATE

23/11/10
CERTIFICATION

This project titled, DESIGN AND FABRICATION OF A KEY DUPLICATING MACHINE, carried out by OYIBOCHA CYRIL EMUOBO has been read and approved having met the requirement for the award of Bachelor of Engineering (B.ENG) degree in Mechanical Engineering of the Federal University of Technology, Minna.

MR. O. J. OKEGBILE
(PROJECT SUPERVISOR)

SIGNATURE & DATE

PROF. R. H KHAN
(HEAD OF DEPARTMENT)

SIGNATURE & DATE

EXTERNAL EXAMINER

SIGNATURE & DATE
DEDICATION

This thesis is dedicated to God Almighty the giver of life and knowledge, my parent’s Mr. and Mrs. G. O Oyibocha, All Less Privilege and my available supervisor, Mr. O. J. Okegbile.
ACKNOWLEDGMENT

I wish to express my profound gratitude to God almighty for seeing me through this phase of my educational pursuit, without him life would have been miserable. To my project supervisor, Mr. O. J. Okegbile, may God bless and reward you for your guidance and constructive criticisms geared towards the success of this project work. My Head of Department, Prof. R. H. Khan, level adviser Dr. I. C. Ugwoke, Engr. S. N. Mohammed and my project co-ordinators Engr. J. A. Onuoah and Engr. J. Folaranmi may God bless you abundantly.

My sincere thanks and gratitude to my beloved parents Mr. and Mrs. George Okpan Oyibocha, for their parental guidance and financial support, my siblings: Mr. Paul, Mr. Patrick, Miss Bethel, Rev. Fr. Abraham, Miss Philomena, Engr. Pius, Engr. Lucky Ben, Miss Eguono, Miss Rukeywe, Engr. Gabriel, Miss Regina, Miss Tina Ofejio, Miss Chidimma Okoli and Miss Beauty Preye, May God guide and protect you all amen. Special thanks to Rev. Fr. Abraham Lucius Ejovwoke Oyibocha for his prayers and financial support.

Special thanks also go to Late Barr. Chidali P.A. to the past Vice-Chancellor FUT Minna, who helped me into this school, Sir and Lady Simon M. Idakwo Sister Bekky, My friends Mudiaga Olori, Engr. Johnson Emmanuel Idakwo, Oneya Godwin, Charlse Agwu, Amadi Ikechukwu and my N. F. C. S Brethren too numerous to mention, also my most precious Chaplain Rev. Fr. Nelson Onuh. May God bless and reward all of you abundantly (Amen).
ABSTRACT

The advancement in technology that has taken place in the design of key duplicating machine together with a review for redesign of some basic components for easy operation has led to this project work. Unlike the other types that has been in existence, this machine presented here is electrically powered by 440 watt AC motor. It consist of (cutter blade, frame, top plate, AC motor, tracer or profile follower, tightening knob and handle) it has advantage over the manual type of key duplicating machine. From the standpoint of power required for operation, it also has a higher speed. This key duplicating machine like others is portable and durable with every part specified to satisfy the desired aim and output, it is also easy to operate and maintain. Meanwhile the frame or base of the machine is made of “mild-steel”. It is a good vibration damper and therefore it reduces shock during loading and absorbs vibration during operation.
TABLE OF CONTENT

TITLE PAGE i
DECLARATION ii
CERTIFICATION iii
DEDICATION iv
ACKNOWLEDGMENT v
ABSTRACT vi
TABLE OF CONTENTS vii
LIST OF FIGURES viii
LIST OF TABLE ix
NOMENCLATURE x

CHAPTER ONE

1.0 INTRODUCTION 1
1.1 HISTORICAL BACKGROUND 1
1.2 AIM AND OBJECTIVES OF THE PROJECT 2
1.3 JUSTIFICATION OF THE PROJECT 2
1.4 SCOPE OF THE PROJECT 3
1.5 LIMITATION OF THE STUDY 3
CHAPTER TWO

2.0 LITERATURE REVIEW AND KEYS

2.1 KEY DUPLICATION

2.2 KEY (LOCK)

2.3 TYPES OF KEYS

2.3.1 House Key

2.3.2 Car Key

2.3.3 Master Key

2.3.4 Control Key

2.3.5 Transponder Key

2.3.6 Double-Sided Key

2.3.7 Paracentric Key

2.3.8 Internal cut Key

2.3.9 Abloy Key

2.3.10 Dimple Key
2.3.11 Skeleton Key 16
2.3.12 Tubular Key 17
2.3.13 Zeiss Key 18
2.3.14 Restricted Key 19
2.3.15 Magnetic Key 20
2.3.16 Key Card 20

CHAPTER THREE

3.0 DESIGN THEORY AND MATERIALS 21

3.1 DESIGN CALCULATION 21
3.1.1 Power Requirement 22
3.2 KEY CUTTING FORCE ANALYSIS (FC) 22
3.3 MASS OF CUTTING DISC 27
3.4 MATERIAL SELECTION 29
3.4.1 The material Properties 29
3.3..2 Availability of the Material 29
3.3..3 Cost of the Material 29
3.5 Components Parts 30
3.5.1 Frame 30
3.5.2 Top Plate 30
3.5.3 Electric Motor 30
3.5.4 Cutter Blade 31
3.5.5 Tracer or Profile Follower 31
3.5.6 Tightening Knob 31
3.5.7 Handle 31
3.6 Material Costing 32
3.6.1 Labour Cost 33
3.6.2 Overhead Cost 33
3.6.3 Total Cost 33

CHAPTER FOUR

4.0 TESTING AND DESCRIPTION OF DESIGN 34
4.1 TESTING 34
4.2 DESCRIPTION OF DESIGN 34
4.3 METHOD OF OPERATION 35
4.4 MAINTENANCE 36

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATION 37
5.1 CONCLUSION 37
5.2 RECOMMENDATION 37
REFERENCES 38
APPENDICES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Key and Lock Mechanism</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Key Cutting Machine</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>A Cut Key</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3a</td>
<td>Car Key in Ignition</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3b</td>
<td>Car Key in Ignition (Configuration)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Sentry Safe Four-Sided Key</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.5a</td>
<td>A Warded Lock</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5b</td>
<td>A Bronze Skeleton key</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>A Tubular Key</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>A Key Chain, A Simple Way To Hold Keys</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>A Sketch Diagram of the Key Duplicating Machine.</td>
<td>21</td>
</tr>
<tr>
<td>Figure: 3.2</td>
<td>A Graph of Exponent(S) against Depth of Cut(Inches)</td>
<td>24</td>
</tr>
<tr>
<td>Figure: 3.3</td>
<td>A Graph of Coefficient(r) against Depth of Cut(inches)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>A Model of A Key Duplicating Machine</td>
<td>35</td>
</tr>
</tbody>
</table>